WWW.DIS.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 | 2 || 4 | 5 |   ...   | 16 |

Население рассеянных звездных скоплений галактики

-- [ Страница 3 ] --

Выявлено, что и молодые скопления, и цефеиды поля демонстрируют пространственную неоднородность химического состава, когда в одном месте сосуществуют однотипные объекты с разным содержанием тяжелых элементов.

Это свидетельствует о том, что межзвездное вещество не успело достаточно перемешаться к началу в нем звездообразования.

Показано, что оба типа объектов демонстрируют примерно равные по величине отрицательные радиальные градиенты металличности, тогда как их азимутальные градиенты металличности отличаются за пределами ошибок и имеют разные знаки. Среди выделяемых по молодым скоплениям звездных комплексов наименее металличные скопления группируются в комплексе Персея.

Именно скопления этого комплекса ответственны за радиальный и азимутальный градиенты металличности среди молодых скоплений. Причем существенные различия распределений в пространстве рассеянных скоплений и звезд поля разной металличности заставляют предположить различие условий, требующихся для образования этих типов объектов.

Четвертая глава посвящена изучению взаимного расположения рассеянных звездных скоплений и сверхпузырей, то есть представителей звездной и диффузной материи, в окрестностях Солнца. В рассмотрение включены Локальный пузырь и сверхпузырь Эридана, расстояния и границы которых определены наиболее точно из нескольких сверхпузырей в радиусе 600 пк от Солнца.

Показано, что рассеянные скопления концентрируются к нейтральной оболочке Локального пузыря, в то время как внутри полости наблюдается дефицит скоплений. Кроме того, скопления отсутствуют и в областях, где Локальный пузырь соединен с Петлей I, сверхпузырем Эридана, туннелем к GSH 238+00+09 и, скорее всего, с Петлей III.

Обнаружено, что все скопления, связанные со сверхпузырем Эридана, принадлежат компактной группе на северной границе оболочки, внутри сверхпузыря скоплений нет.

Выявлено, что все скопления сверхпузыря Эридана удаляются от границ пузыря, в то время как векторы скоростей скоплений Локального пузыря разнонаправлены. Возраст скоплений, связанных с Локальным пузырем, варьируется от 4 млн. до 800 млн. лет, то есть большинство скоплений образовались гораздо раньше самого пузыря. Все скопления, связанные со сверхпузырем Эридана, который принадлежит области современного звездообразования, – молодые со средним возрастом 14.5 млн. лет.

Найдено, что среди скоплений, ассоциируемых с Локальным пузырем и сверхпузырем Эридана, отсутствуют малометалличные скопления и скопления с высокими скоростями, то есть скопления с «необычным» происхождением.

обсуждаются перспективы дальнейших исследований.

Основные результаты диссертации опубликованы в 8 печатных работах, в том числе 6 из них - в журналах, входящих в перечень изданий, рекомендованных ВАК.

Гожа М.Л., Боркова Т.В., Марсаков В. А. Неоднородность населения рассеянных звездных скоплений в Галактике // Письма в Астрономический журнал. - 2012. - Т. 38. - № 8. - С. 571-583.

Гожа М.Л., Коваль В.В., Марсаков В.А. Два населения рассеянных звездных скоплений в Галактике // Письма в Астрономический журнал. - 2012. Т. 38. - № 8. - С. 584-596.

Гожа М.Л., Марсаков В.А. Молодые рассеянные звездные скопления:

пространственное распределение металличности в окрестностях Солнца // Письма в Астрономический журнал. - 2013. - Т. 39. - № 3. - С. 196-203.

Марсаков В.А., Гожа М.Л. Природа рассеянных звездных скоплений в Галактике // Вестник Удмуртского университета. Математика. Механика.

Компьютерные науки. - 2013. - № 2. - С. 92-106.

металличности в окрестностях Солнца по данным о молодых рассеянных скоплениях и цефеидах поля // Вестник Удмуртского университета. Математика.

Механика. Компьютерные науки. - 2013. - № 1. - С. 99-108.

Гожа М.Л. Рассеянные звездные скопления в областях Локального пузыря и сверхпузыря Эридана // Известия вузов. Северо-Кавказский регион.

Естественные науки. - 2010. - № 6. - С. 44-47.

7. Shatsova, R.B., Gozha, M.L. Radioloops in Zone of Avoiding of Open Clusters // Odessa Astronomical Publications. - 2008. - V. 21. - P. 108-110.

8. Shatsova, R., Gozha, M. Open Clusters and Superbubbles // Astrophysics and Cosmology after Gamow: Proceedings of the 4th Gamow International Conference on Astrophysics and Cosmology after Gamow and the 9th Gamow Summer School «Astronomy and Beyond: Astrophysics, Cosmology, Radio Astronomy, High Energy Physics and Astrobiology». AIP Conference Proceedings. - 2010. - V. 1206. - P. 382Личный вклад автора Автор принимала участие в постановке всех задач, астрофизическом анализе полученных результатов и формулировках выводов в главах 1 - 3, тогда как в главе 4 постановка задачи принадлежит автору равноправно с соавтором, а остальное принадлежит ей полностью. Автору полностью также принадлежат составление каталогов данных для рассеянных скоплений и цефеид, расчеты их параметров и проведение статистической обработки данных.

Неоднородность населения рассеянных звездных скоплений отслеживают свойства галактического диска, поскольку такие параметры, как расстояния, металличности и возрасты определяются для скоплений значительно точнее, чем для одиночных звезд поля [9]. Эти звездные системы обладают низкой центральной концентрацией, довольно слабо гравитационно связаны, межзвездного газа и поэтому являются весьма короткоживущими системами [10].

Тем не менее, среди них встречаются и скопления с возрастами более миллиарда лет. К сожалению, отсутствие молодых горячих звезд, высокая дисперсность и проэволюционировавших старых рассеянных скоплениях создают значительную наблюдательную селекцию против них. Такие скопления труднее выделяются на фоне звезд поля, и это одна из причин, по которой их известно так мало. Этот эффект довольно трудно учесть, но его следует принимать во внимание при выводах, делаемых из свойств наблюдаемых рассеянных скоплений.



В качестве основного источника данных рассеянных скоплений мы взяли версию 3.1 (ноябрь 2010 г.) компилятивного каталога [11]. Это наиболее полный на настоящий момент каталог рассеянных звездных скоплений, постоянно обновляемый и дополняемый данными самых последних публикаций. К недостаткам каталога следует отнести принцип его построения на основе компиляции данных многих авторов, использовавших различные критерии, калибровки, технику и инструменты. При этом авторы каталога данные не анализируют, не усредняют, а отбирают наиболее точные с их точки зрения определения параметров. В результате в каталоге значения параметров скоплений получились неоднородными. Однако в работе [12], авторы, использовавшие в своем исследовании усредненные значения, показали, что результаты, полученные по данным их каталога и первой версии каталога [11], имеют одинаковую статистическую значимость. Поскольку целью настоящей работы является комплексное статистическое исследование химических, физических и пространственно-кинематических свойств населений рассеянных скоплений, мы посчитали возможным взять за основу несведенные данные этого, наиболее объемного каталога, дополнив его другими необходимыми параметрами скоплений.

В используемой версии каталога [11] представлены данные для скоплений, в том числе для 1309 определены расстояния, а для 485 скоплений известны одновременно и собственные движения, и лучевые скорости. В связи с тем, что для 500 скоплений мы используем элементы галактических орбит, вычисленные в [5, 6, 13], то расстояния, собственные движения и лучевые скорости для них мы взяли из соответствующих работ (подробнее см. пункт 1.2.2). На основе имеющихся данных мы вычислили прямоугольные координаты (x, y, z), а также компоненты (VR, V, VZ) пространственных скоростей в цилиндрических координатах, исправленных за движение Солнца относительно локального центроида. Здесь компонента VR направлена на антицентр Галактики, V – в сторону галактического вращения, а VZ – к северному полюсу Галактики.

(u, v, w) = (11.1, 12.24, 7.25) км/с [14], солнечное галактоцентрическое расстояние R0 = 8.0 кпк, а скорость вращения локального центроида (LSR) – 220 км/с.

Приведем формулы, с помощью которых определялись положения и скорости скоплений и звезд поля. Пусть d – гелиоцентрическое расстояние (в пк) скопления с галактическими координатами (l, b). Прямоугольные галактические координаты скоплений вычислим по формулам (см., например, [15]):

Кинематические параметры рассеянных скоплений в каталоге [11], а также в других используемых нами работах – компоненты собственного движения по прямому восхождению µcosb и склонению µ и лучевая скорость vr Расчет компонент скоростей по этим параметрам производился следующим образом.

От компонент собственного движения в экваториальной системе координат переходим к компонентам µ в галактической системе:

объекте между направлениями на галактический полюс и на полюс мира.

Тригонометрические функции угла находим с помощью формул:

где G = 27.12825 – склонение полюса Галактики, l = 32.93192 - разность между восходящим узлом галактического экватора и нуль-пунктом долгот, склонение скопления.

Компоненты тангенциальной скорости в галактической системе координат:

где k 4.738 – коэффициент перевода тангенциальной скорости, выраженной в астрономических единицах в год, в км/с.

Прямоугольные компоненты пространственных скоростей в галактической системе координат вычисляются:

пространственных скоростей в галактической системе координат. Прямоугольные компоненты скорости необходимо исправить за пекулярное движение Солнца и его обращение вокруг центра Галактики. Рисунок 1.1 иллюстрирует вывод формул.

Пусть угол – угол при центре Галактики между направлениями на Солнце и на объект. Тогда Найдем тригонометрические функции угла.

Получим цилиндрические компоненты скорости Здесь x, u направлены к центру, а VR - к антицентру Галактики, y, v, V - в сторону вращения Галактики, w, VZ – к северному галактическому полюсу.

Рисунок 1.1 - К выводу формул цилиндрических компонент относительных пространственных скоростей в галактической системе координат.

Средняя относительная ошибка расстояний для всех скоплений, как находят в [5], равна 20%. Этой оценке не противоречат и результаты работы [12], в которой показано, что у 80% из 395 скоплений, для которых нашлось три и более независимых определения расстояний, ошибка оказалась менее 20%.

Пространственные скорости определяются, как правило, только для скоплений, у которых удается измерить лучевые скорости и собственные движения более чем для пяти звезд. Мы посчитали среднюю величину ошибки компонент скоростей, используя данные работы [6], и получили ее равной 10.0 км/с.

Для 488 скоплений, имеющих все три компоненты скорости, мы привели вычисленные в работе [5] для них по этим данным эксцентриситеты орбит (e), максимальные удаления точек орбит от галактической плоскости (Zmax), а также перигалактические (Rp) и апогалактические (Rа) радиусы орбит. Эти же параметры еще для трех скоплений (NGC 6253, NGC 6404, NGC 6583) мы взяли из работы [13]. Эксцентриситеты и максимальные удаления от галактической плоскости еще для девяти скоплений (NGC 433, NGC 1513, Collinder 220, Loden 807, NGC 6249, Berkeley 81, IC 1311, NGC 7044, Berkeley 99) получены из работы [6]. Ввиду того, что в [13] в расчетах используется несколько отличное от работ [5, 6] солнечное галактоцентрическое расстояние - 8.5 кпк против 8.0 кпк, мы уменьшили приведенные там радиусы орбит на 0.5 кпк.



Pages:     | 1 | 2 || 4 | 5 |   ...   | 16 |
 

Похожие материалы:

«ЧАЗОВ Вадим Викторович РАЗРАБОТКА И ПРИМЕНЕНИЕ АЛГОРИТМОВ ЧИСЛЕННО-АНАЛИТИЧЕСКОГО МЕТОДА ВЫЧИСЛЕНИЯ ПОЛОЖЕНИЙ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ Диссертация на соискание учёной степени доктора физико-математических наук Специальность 01.03.01. Астрометрия и небесная механика Москва – 2012 Содержание 1 Содержание Предисловие 7 1 Постановка задачи 17 1.1 Стандартные соглашения . . . . . . . . . . . . . . . . . . . . . . 17 1.1.1 Системы отсчёта . . . . . . . . . . . . . . . . . . . . . . . 17 1.1.2 ...»

« УДК 524.7;524.72-4 КАЙСИНА Елена Ивановна БАЗОВЫЕ СВОЙСТВА ГАЛАКТИК МЕСТНОГО ОБЪЕМА (01.03.02 - Астрофизика и звездная астрономия) ДИССЕРТАЦИЯ на соискание ученой степени кандидата физико–математических наук Научный руководитель: доктор физико–математических наук, профессор Караченцев И. Д. Нижний Архыз – 2014 2 Оглавление Введение Общая характеристика работы Актуальность Цели и задачи исследования Научная новизна Научная и практическая ценность работы Основные результаты ...»




 
© 2013 www.dis.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.