Ѕ≈—ѕЋј“Ќјя ЁЋ≈ “–ќЌЌјя Ѕ»ЅЋ»ќ“≈ ј

Ќаучна€ библиотека

Pages:     | 1 |   ...   | 18 | 19 ||

’арактеристики форбуш-эффектов и их св€зь с солнечными, межпланетными и геомагнитными возмущени€ми

-- [ —траница 20 ] --

124. Kunow H., Crooker N.U., Linker J.A., Schwenn R., Von Steiger R.

Foreword // Space Sci. Rev. Ц 2006. Ц V. 123. Ц P. 1Ц2.

125. Lara A., Gopalswamy N., Caballero-Lpez R.A., Yashiro S., Xie H., Valds-Galicia J.F. Coronal mass ejections and galactic cosmic-ray modulation // Astrophys. J. Ц 2005. Ц V. 625. Ц P. 441Ц450.

126. Lemen J.R., Title A.M., Akin D.J. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Solar Phys. Ц 2012. Ц V. 275. Ц P. 17Ц40.

127. Liu Y., Davies J.A., Luhmann J.G., Vourlidas A., Bale S.D., Lin R.P.

Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU // Astrophys. J. Lett. Ц 2010. Ц V. 710. Ц P. L82ЦL87.

128. Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci.

Revs. Ц 1971. Ц V. 12. Ц P. 658Ц715.

129. Lockwood J.A., Webber W.R., Jokipii J.R. Characteristic recovery times of Forbush-type decreases in the cosmic radiation. I Ц Observations at Earth at different energies // J. Geophys. Res. Ц 1986. Ц V. 91. Ц P. 2851Ц2857.

130. Lockwood J.A. List of Forbush decreases 1954-1990 with supplemental information // Solar Geophys. Data. Ц 1990. Ц N. 549. Ц P. 154Ц163.

131. Lockwood J.A., Webber W.R., Debrunner H. Forbush decreases and interplanetary magnetic field disturbances Ц Association with magnetic clouds // J.

Geophys. Res. Ц 1991. Ц V. 96. Ц P. 11587Ц11604.

132. Lugaz N., Hernandez-Charpak J.N., Roussev I.I., Davis C.J., Vourlidas A., Davies J.A. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI // Astrophys. J.

Ц 2010. Ц V. 715. Ц P. 493Ц499.

133. Mandrini C.H., Nakwacki M.S., Attrill G., van Driel-Gesztelyi L., Dasso S., Dµemoulin P. The link between CME-associated dimmings and interplanetary magnetic clouds // Proc. IAU Symp. Ц 2009. Ц V. 257. Ц P. 265Ц270.

134. Marubashi K., Cho K.-S., Kim Y.-H., Park Y.-D., Park S.-H. Geometry of the 20 November 2003 magnetic cloud // J. Geophys. Res. Ц 2012. Ц V. 117. Ц A01101, DOI: 10.1029/2011JA016802.

135. Mayaud P.N., Romana A. Supplementary geomagnetic data, 1957-1975.

IAGA Bulletin. N. 39. Paris: IUGG Pub. Office. Ц 1977. Ц P. 147.

136. McComas D.J., Goldstein R., Gosling J.T., Skoug R.M. Ulysses' second orbit: Remarkably different solar wind // Space Sci. Rev., 2001. V. 97. P. 99Ц103.

137. McCracken K.G., Rao V.R., Shea M.A. The trajectories of cosmic rays in a high degree simulation of the geomagnetic field // Technical report, Massachusetts Institute of Technology. Ц 1962. Ц N. 77. Ц P. 77.

138. McCracken K.G., Rao V.R., Fowler B.C., Shea M.A., Smart D.F. Cosmic ray tables (asymptotic directions, variational coefficients and cut-off rigidities // IQSY instruction manual. Ц 1965. Ц N. 10. Ц P. 183.

139. Michalek G., Gopalswamy N., Lara A., Yashiro S. Properties and geoeffectiveness of halo coronal mass ejections // Space Weather. Ц 2006. Ц V. 4. Ц S10003, DOI: 10.1029/2005SW000218.

140. Michalek G., Gopalswamy N., Yashiro S. Space weather application using projected velocity asymmetry of halo CMEs // Solar Phys. Ц 2008. Ц V. 248. Ц P.


141. Miroshnichenko L.I. Solar cosmic rays // Kluwer Academic publishers. Ц 2001. Ц P. 492.

142. Moraal H., Belov A., Clem J. Design and co-ordination of multi-station international neutron monitor network // Space Sci. Rev. Ц 2000. Ц V. 93. Ц P. 285Ц 303.

143. Munakata K., Bieber J., Yasue S. et al. Precursors of geomagnetic storms observed by the muon detector network // J. Geophys. Res. Ц 2000. Ц V. 105. Ц P.


144. Nagashima K. Three-dimensional cosmic ray anisotropy in interplanetary space // Rep. Ionosphere Space Res. Ц 1971. Ц V. 25. Ц P. 189Ц211.

145. Nagashima K., Sakakibara S., Murakami K., Morishita I. Response and yield functions of neutron monitor, Galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys // Nuovo Cimento C. Ц 1989. Ц V. 12. Ц N. 2. Ц P. 173Ц209.

146. Papailiou M., Mavromichalaki H., Belov A., Eroshenko E., Yanke V.

Precursor effects in different cases of Forbush decreases // Solar Phys. Ц 2012. Ц V.

276. Ц P. 337Ц350.

147. Papaioannou A., Malandraki O.E., Mavromichalaki H., Belov A., Skoug R., Eroshenko E., Abunin A. Study of the January 2005 Forbush decreases // EGU General Assembly. Ц 2010. Ц P. 1242.

148. Papaioannou A., Malandraki O., Belov A., Skoug R., Mavromichalaki H., Eroshenko E., Abunin A., Lepri S. On the analysis of the complex Forbush decreases of January 2005 // Solar Phys. Ц 2010. Ц V. 266. Ц P. 181Ц193.

149. Paquet E., Laval M., Basalaev L.M., Belov A., Eroshenko E., Kartyshov V.

Struminsky A., Yanke V. An application of cosmic-ray neutron measurements to the determination of the snow-water equivalent // Proc. 30th Int. Cosmic Ray Conf., Merida. Ц 2008. Ц V. 1. Ц P. 761Ц764.

150. Parker E.N. Interplanetary dynamical processes // New York: Interscience Publishers. Ц 1963. Ц 272 p.

151. Penna R.F., Quillen, A.C. Decay of interplanetary coronal mass ejections and Forbush decrease recovery times // J. Geophys. Res. Ц 2005. Ц V. 110. Ц A09S05, DOI: 10.1029/2004JA010912.

152. Pomerantz M.A., Duggal S.P. North-south anisotropies in the cosmic radiation // J. Geophys. Res. Ц 1972. Ц V. 77. Ц P. 263Ц265.

153. Reames D.V., Kahler S.W., Tylka A.J. Anomalous cosmic rays as probes of magnetic clouds // Astrophys. J. Lett. Ц 2009. Ц V. 700. Ц P. L196ЦL199.

154. Richardson I.G., Cane H.V. Signatures of shock drivers in the solar wind and their dependence on the solar source location // J. Geophys. Res. Ц 1993. Ц V. 98.

Ц P. 15295Ц15304.

155. Richardson I.G., Wibberenz G., Cane H.V. The relationship between recurring cosmic ray depressions and corotating solar wind streams at =1 AU: IMP 8 and Helios 1 and 2 anticoincidence guard rate observations // J. Geophys. Res. Ц 1996. Ц V. 101. Ц P. 13483Ц13496.

156. Richardson I.G., Dvornikov V.M., Sdobnov V.E., Cane H.V. Bidirectional particle flows at cosmic ray and lower (~1 MeV) energies and their association with interplanetary coronal mass ejections/ejecta // J. Geophys. Res. Ц 2000. Ц V. 105. Ц P.


157. Richardson I.G. Energetic particles and corotating interaction regions in the solar wind // Space Sci. Rev. Ц 2004. Ц V. 111. Ц P. 267Ц376.

158. Richardson I.G., Cane H.V. A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2005 // Proc. Solar Wind 11/SOHO 16, Canada. Ц 2005. Ц SP-592. Ц P. 755.

159. Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996Ц2009): catalog and summary of properties // Solar Phys. Ц 2010. Ц V. 264. Ц P. 189Ц237.

160. Richardson I.G., Cane H.V. Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in 1995-2009 // Solar Phys. Ц 2011. Ц V. 270. Ц P. 609Ц627.

161. Richardson I.G., Cane H.V. Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995Ц2009 and implications for storm forecasting // Space Weather. Ц 2011. Ц V. 9. Ц DOI: 10.1029/2011SW000670.

162. Roldugin V.K., Beloglazov M.I. Schumann resonance amplitude during the Forbush effect // Geomag. Aeronomy. Ц 2008. Ц V. 48. Ц P. 768Ц774.

163. Russell C.T. Geophysical coordinate transformations // Cosmic Electrodyn.

Ц 1971. Ц V. 2. Ц P. 184Ц196.

164. Sanderson R.T., Beeck J., Marsden G.R., Tranquille C., Wenzel K., McKibben B.R., Smith J.E. A study of the relation between magnetic clouds and Forbush decreases // Proc. 21st Int. Cosmic Ray Conf., Adelaide. Ц 1990. Ц V. 6. Ц P.


165. Scherrer P.H., Bogart R.S., Bush R.I., Hoeksema J.T., Kosovichev A.G., Schou J., Rosenberg W., Springer L., Tarbell T.D., Title A., Wolfson C.J., Zayer I.

The solar oscillations investigation - Michelson Doppler Imager // Solar Phys. Ц 1995. Ц V. 162. Ц P. 129Ц188.

166. Schmieder B., Dmoulin P., Pariat E. et al. Actors of the main activity in large complex centres during the 23 solar cycle maximum // Adv. Space Res. Ц 2011.

Ц V. 47. Ц P. 2081Ц2091.

167. Shea M.A., Smart D.F., McCall J.R. A five degree by fifteen degree world grid of trajectory-determined vertical cutoff rigidities // Can. J. Phys. Ц 1968. Ц V. 46.

Ц P. 1098Ц1101.

168. Shea M.A., Smart D.F., HumbleJ.E., Flckiger E.O., Gentile L.C., Nichol M.R. A revised standard format for cosmic ray ground-level event data // Proc. 20th Int. Cosmic Ray Conf., Moscow. Ц 1987. Ц V. 3. Ц P. 171Ц174.

169. Shea M.A., Smart D.F. Solar proton event patterns: the rising portion of five solar cycles // Adv. Space Res. Ц 2002. Ц V. 29. Ц N. 3. Ц P. 325Ц330.

170. Shibata S., Munakata Y., Tatsuoka R. et al. Calibration of neutron monitor using accelerator neutron beam // Proc. 26th Int. Cosmic Ray Conf., Salt Lake City. Ц 1999. Ц V. 7. Ц P. 313Ц316.

171. Simpson J.A., Fonger W., Treiman S.B. Cosmic radiation intensity Ц time variations and their origin. I. Neutron intensity variation method and meteorological factors // Phys. Rev. Ц 1953. Ц V. 90. Ц P. 934Ц950.

172. Simpson J.A. CosmicЦradiation intensityЦtime variations and their origin.

III. The origin of 27-day variations // Phys. Rev. Ц 1954. Ц V. 94. Ц P. 426Ц440.

173. Simpson J.A. Cosmic-radiation neutron intensity monitor // Annals of the IGY. Ц 1957. Ц V. 4. Ц P. 351Ц373.

174. Simpson J.A. Cosmic radiation neutron intensity monitor // Annals of the Int. Geophy. Yr. IV. Parts I-III, Pergamon Press, London. Ц 1958. Ц P. 351.

175. Singh Y.P., Badruddin. Corotating high-speed solar-wind streams and recurrent cosmic ray modulation // J. Geophys. Res. Ц 2007. Ц V. 112. Ц A05101, DOI: 10.1029/2006JA011779.

176. Sinno K. Mechanism of cosmic ray storms inferred from some statistical results // J. Phys. Soc. Japan. Ц 1962. Ц V. 17. Ц P. 395Ц399.

177. Siscoe G., Schwenn R. CME disturbance forecasting // Space Sci. Rev. Ц 2006. Ц V. 123. Ц P. 453Ц470.

178. Smart D.F., Shea M.A. Probable pitch angle distribution and spectra of the 23 February 1956 solar cosmic ray event // Proc. 21st Int. Cosmic Ray Conf., Adelaide. Ц 1990. Ц V. 5. Ц P. 257Ц260.

179. Smith Z.K., Steenburgh R., Fry C.D., Dryer M. Predictions of interplanetary shock arrivals at Earth: Dependence of forecast outcome on the input parameters // Space Weather. Ц 2009. Ц V. 7. Ц DOI: 10.1029/2009SW000500.

180. Song H., Yurchyshyn V., Yang G., Tan C., Chen W., Wang H. The automatic predictability of super geomagnetic storms from halo CMEs associated with large solar flares // Solar Phys. Ц 2006. Ц V. 238. Ц P. 141Ц165.

181. Sterling A.C., Hudson H.S. YOHKOH SXT observations of X-ray "dimming" associated with a halo coronal mass ejection // Astrophys. J. Lett. Ц 1997.

Ц V. 491. Ц P. L55.

182. Sterling A.C., Hudson H.S., Thompson B.J., Zarro D. Yohkoh SXT and SOHO EIT observations of sigmoid-to-arcade evolution of structures associated with halo coronal mass ejections // Astrophys. J. Ц 2000. Ц V. 532. Ц P. 628Ц647.

183. Struminsky A. Forbush precursory increase and shock-associated particles on 20 October 1989 // Annales Geophysicae. Ц 2002. Ц V. 20. Ц P. 1247Ц1252.

184. Svestka Z. Varieties of coronal mass ejections and their relation to flares // Space Sci. Rev. Ц 2001. Ц V. 95. Ц P. 135Ц146.

185. Taktakishvili A., Kuznetsova M., MacNeice P., Hesse M., Rasttter L., Pulkkinen A., Chulaki A., Odstrcil D. Validation of the coronal mass ejection predictions at the Earth orbit estimated by ENLIL heliosphere cone model // Space Weather. Ц 2009. Ц V. 7. Ц S03004, DOI: 10.1029/2008SW000448.

186. Thatcher L.J., Mller H.-R. Statistical investigation of hourly OMNI solar wind data // J. Geophys. Res. Ц 2011. Ц V. 116. Ц DOI: 10.1029/2011JA017027.

187. Thompson B.J., Plunkett S.P., Gurman J.B., Newmark J.S., St. Cyr O.C., Michels D.J. SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997 // Geophys. Res. Lett. Ц 1998. Ц V. 25. Ц P. 2465Ц2468.

188. Tripathi D., Bothmer V., Cremades H. The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions // Astron. Astrophys. Ц 2004. Ц V. 422. Ц P. 337Ц349.

189. Vrnak B., ic T., Falkenberg T. V., Mstl C., Vennerstrom S., Vrbanec D.

The role of aerodynamic drag in propagation of interplanetary coronal mass ejections // Astron. Astrophys. Ц 2010. Ц V. 512. Ц A43, DOI: 10.1051/0004-6361/200913482.

190. Wang Y.M., Ye P.Z., Wang S., Zhou G.P., Wang J. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000 // J. Geophys. Res. Ц 2002. Ц V. 107. Ц CiteID 1340. Ц DOI 10.1029/2002JA009244.

191. Wawrzynczak A., Alania M.V. Modeling and experimental study of the Forbush effect of galactic cosmic rays // Adv. Space Res. Ц 2008. Ц V. 41. Ц P. 325Ц 334.

192. Webb D.F., Lepping R.P., Burlaga L.F. et al. The origin and development of the May 1997 magnetic cloud // J. Geophys. Res. Ц 2000. Ц V. 105. Ц P. 27251Ц 27260.

193. Wibberenz G., Le Roux J.A., Potgieter M.S., Bieber J.W. Transient effects and disturbed conditions // Space Sci. Rev. Ц 1998. Ц V. 83. Ц P. 309Ц348.

194. Wood B.E., Wu C.-C., Howard R.A., Socker D.G., Rouillard A.P.

Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24 // Astrophys. J. Ц 2011. Ц V. 729. Ц ID 70. Ц DOI:


195. Xie H., Gopalswamy N., Ofman L., St. Cyr O.C., Michalek G., Lara A., Yashiro S. Improved input to the empirical coronal mass ejection (CME) driven shock arrival model from CME cone models // Space Weather. Ц 2006. Ц V. 4. Ц S10002, DOI: 10.1029/2006SW000227.

196. Yashiro S., Gopalswamy N., Michalek G., St. Cyr O.C., Plunkett S.P., Rich N.B., Howard R.A. A catalog of white light coronal mass ejections observed by the SOHO spacecraft // J. Geophys. Res. Ц 2004. Ц V. 109. Ц A07105, DOI:


197. Yashiro S., Michalek G., Akiyama S., Gopalswamy N., Howard R.A.

Spatial relationship between solar flares and coronal mass ejections // Astrophys. J. Ц 2008. Ц V. 673. Ц P. 1174Ц1180.

198. Yasue S., Mori S., Sakakibara S., Nagashima K. Coupling coefficients of cosmic ray daily variations for neutron monitor stations // Nagoya. Ц 1982. Ц N. 7. Ц P. 225.

199. Yu X., Lu H., Le G., Shi F. Influence of magnetic clouds on variations of cosmic rays in November 2004 // Solar Phys. Ц 2010. Ц V. 263. Ц P. 223Ц237.

200. Yurchyshyn V., Wang H., Abramenko V. Correlation between speeds of coronal mass ejections and the intensity of geomagnetic storms // Space Weather. Ц 2004. Ц V. 2. Ц S02001, DOI: 10.1029/2003SW000020.

201. Yurchyshyn V., Tripathi D. Relationship between earth directed solar eruptions and magnetic clouds at 1AU: A brief review // Adv. Geosci. Ц 2009. Ц V.

21. Ц P. 51.

202. Zhang G., Burlaga L.F. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. Ц 1988. Ц V. 93. Ц P. 2511Ц2518.

203. Zhang J., Richardson I.G., Webb D.F. et al. Solar and interplanetary sources of major geomagnetic storms (Dst = Ц100 nT) during 1996-2005 // J.

Geophys. Res. Ц 2007. Ц V. 112. Ц A10102, DOI: 10.1029/2007JA012321.

204. Zhang J., Richardson I.G., Webb D.F. et al. Correction to УSolar and interplanetary sources of major geomagnetic storms (Dst = Ц100 nT) during 1996J. Geophys. Res. Ц 2007. Ц V. 112. Ц A12103, DOI: 10.1029/2007JA012891.

205. Zhukov A.N. Solar sources of geoeffective CMEs: a SOHO/EIT view // Proc. IAU Symp. Ц 2005. Ц 226. Ц P. 437Ц447.

Pages:     | 1 |   ...   | 18 | 19 ||

ѕохожие материалы:

Ђ упри€нов ¬ладимир ¬икторович „исленно-экспериментальное исследование вращательной динамики спутников планет 01.03.01 Ц јстрометри€ и небесна€ механика ƒ»——≈–“ј÷»я на соискание ученой степени кандидата физико-математических наук Ќаучный руководитель д. ф.-м. н. Ўевченко »ван »ванович —анкт-ѕетербург Ц 2014 ќглавление ¬ведение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 √лава 1. »сторический обзор . . . . . . . . . . . . . . . . . . . . . 9 1.1. „исленное ...ї

Ђ √ожа ћарина Ћьвовна Ќј—≈Ћ≈Ќ»≈ –ј——≈яЌЌџ’ «¬≈«ƒЌџ’ — ќѕЋ≈Ќ»… √јЋј “» » 01.03.02 Ц астрофизика и звездна€ астрономи€ ƒиссертаци€ на соискание ученой степени кандидата физико-математических наук Ќаучный руководитель доктор физико-математических наук, профессор ¬.ј. ћарсаков –остов-на-ƒону Ц 2014 2 ќглавление ¬ведениеЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕ. 5 √лава 1. Ќеоднородность населени€ рассе€нных звездных скоплений в √алактикеЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕЕ. 20 1.1 ...ї

Ђ„ј«ќ¬ ¬адим ¬икторович –ј«–јЅќ“ ј » ѕ–»ћ≈Ќ≈Ќ»≈ јЋ√ќ–»“ћќ¬ „»—Ћ≈ЌЌќ-јЌјЋ»“»„≈— ќ√ќ ћ≈“ќƒј ¬џ„»—Ћ≈Ќ»я ѕќЋќ∆≈Ќ»… »— ”——“¬≈ЌЌџ’ —ѕ”“Ќ» ќ¬ «≈ћЋ» ƒиссертаци€ на соискание учЄной степени доктора физико-математических наук —пециальность 01.03.01. јстрометри€ и небесна€ механика ћосква Ц 2012 —одержание 1 —одержание ѕредисловие 7 1 ѕостановка задачи 17 1.1 —тандартные соглашени€ . . . . . . . . . . . . . . . . . . . . . . 17 1.1.1 —истемы отсчЄта . . . . . . . . . . . . . . . . . . . . . . . 17 1.1.2 ...ї

Ђ ”ƒ  524.7;524.72-4  ј…—»Ќј ≈лена »вановна Ѕј«ќ¬џ≈ —¬ќ…—“¬ј √јЋј “»  ћ≈—“Ќќ√ќ ќЅЏ≈ћј (01.03.02 - јстрофизика и звездна€ астрономи€) ƒ»——≈–“ј÷»я на соискание ученой степени кандидата физикоЦматематических наук Ќаучный руководитель: доктор физикоЦматематических наук, профессор  араченцев ». ƒ. Ќижний јрхыз Ц 2014 2 ќглавление ¬ведение ќбща€ характеристика работы јктуальность ÷ели и задачи исследовани€ Ќаучна€ новизна Ќаучна€ и практическа€ ценность работы ќсновные результаты ...ї

© 2013 www.dis.konflib.ru - ЂЅесплатна€ электронна€ библиотекаї

ћатериалы этого сайта размещены дл€ ознакомлени€, все права принадлежат их авторам.
≈сли ¬ы не согласны с тем, что ¬аш материал размещЄн на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.