WWW.DIS.KONFLIB.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА

 
<< HOME
Научная библиотека
CONTACTS

Pages:     | 1 |   ...   | 18 | 19 || 21 | 22 |   ...   | 64 |

Приборы и методы контроля и мониторинга воздействия автотранспорта на атмосферный воздух северных городов

-- [ Страница 20 ] --

Важным элементом многих лазеров является диэлектрический интерференционный фильтр, изготовленный путем нанесения на подложку различных слоев испарения в вакууме. Эти фильтры, состоящие из последовательных слоев с высоким и низким показателями преломления, пригодны для работы в областях от ближней ультрафиолетовой до средней инфракрасной. Для тех примесей, где требуется высокое спектральное разрешение, обычно выбирают или интерферометр Фабри-Перо, или дифракционный монохроматор. Интерферометр Фабри-Перо обеспечивает более высокую разрешающую способность, обладает большей светосилой. Полосу пропускания интерферометра можно сканировать, изменяя давление газа между пластинками интерферометра, или смещать одну пластину относительно другой.

Из широкого выбора монохроматоров наиболее популярной представляется схема Черни-Турнера, обеспечивающая низкий уровень показателя рассеянного света, равный обычно 10–6. Для тех случаев применения, где эти характеристика имеет критическое значение (например, для измерения сигналов комбинационного рассеяния в обратном направлении), часто используются двойные монохроматоры.

Недавние успехи в изготовлении голографических решеток привели к производству компактных, простых и дешевых приборов с малым уровнем рассеянного света.

В тех случаях, когда требуется контролировать определенное число хорошо известных спектральных характеристик, монохроматор можно заменить полихроматором, который обеспечивает выделение ряда предварительно выбранных интервалов длин волн.

Большие оптические потери между входной щелью любой диспергирующей системы и приемным устройством являются одним из основных недостатков этого класса спектроанализаторов. Для улучшения пропускающей способности применяют пучки оптических волокон специальной формы или делители изображения. Некоторую конкуренцию монохроматорам и спектрометрам могут составлять клинообразные фильтры с длиной волны полосы пропускания.

2.5 Методы дистанционного обнаружения атомов и молекул, измерения их концентрации и температуры, основанные на использовании комбинационного рассеяния света Как показал проведенный анализ, в основе методов лазерного зондирования используется облучение объекта падающим потоком с последующим анализом прошедшего через исследуемый объект потока, либо рассеянного от этого объекта излучения. Используя тот или иной эффект взаимодействтя падающего лазерного излучения с частицами атмосферы или совокупность этих эффектов, ту или иную схему измерения, приходят к разным методам лазерного зондирования. [42,48-51,68,70-73,79В настоящее время создан молщный аппарат дешифровки отраженного зондирующего излучения. В таблице 23 приведены типичные характеристики основных видов взаимодействия лазерного излучения с атмосферными компонентами. Рассеивание оптических волн в зависимости от типа рассеивателей и соотношения их размеров с длиной волны обычно подразделяется на три вида: рассеяние Мu, рэлеевское и комбинационное рассеяние (КР) света.

Таблица 23 - Сравнение процессов оптического взаимодействия, применяемых в методах дистанционного лазерного зондирования атмосферы Рассеяние Мu это классическое упругое рассеяние, происходящее на длине волны падающего излучения, когда размеры рассеивающих частиц сравнимы с длиной волны оптического излучения или больше ее. При этом рассеиваемый свет сконцентрирован в основном в направлении «вперед» и имеет значительно меньшую интенсивность в направлении «назад». Хотя сечение этого вида рассеяния обычно не очень велико, что обеспечивает высокую чувствительность при зондировании таких частиц вещества, как пыль, водяные капли, рассеяние Мu в то же время не позволяет проводить количественный анализ атомного и молекулярного состава атмосферы.

Рэлеевское рассеяние также когерентно и происходит без сколько-нибудь значительного обмена энергией с внутренними состояниями молекул и атомов, как показано на рис. 17-а, где 0 обозначают частоту (волновое число) падающего, а р рассеянного излучения. На рисунке представлены основное и возбужденное электронные состояния и их отдельные уровни. В случае атомов отдельные уровни образуются вследствие взаимодействий, определяющих тонкую и сверхтонкую структуру, а в случае молекул они соответствуют колебательно-вращательным состояниям. Энергия рэлеевского рассеяния сосредоточена вблизи направления распространения пучка с равными интенсивностями рассеяния «вперед» и «назад». Поскольку центральная длина волны рэлеевской компоненты рассеяния совпадает с длиной волны рассеяния Мu и зависимость ее интенсивности от является гладкой функцией (–4), то различить эти два вида можно только по индикатрисе рассеяния. Контур линии рэлеевского рассеяния содержит информацию о температуре (вследствие эффекта Допплера).

Рисунок 17 - Диаграмма энергетических уровней атома или молекулы и процессов взаимодействия, связанных с рассеянием и флуоресценцией а — рэлеевское рассеяние; б — стоксово комбинационное рассеяние; в — резонансное комбинационное рассеяние; г — резонансная флуоресценция; д — широкополосная нерезонансная флуоресценция; е — резонансное рассеяние; m1, т2 и m3 — начальный, промежуточный и конечный уровни.

Рэлеевское рассеяние используется для исследования турбулентности атмосферы, флуктуации плотности в диффузионных пламенах и определения видов молекул в турбулентном потоке, рассеяние Мu для определения размеров, концентраций и скоростей частиц. На рисунке 17 изображены и другие возможные механизмы, связанные с атомными и молекулярными процессами, в которых фотон рассеивается неупруго. Процесс СКР включает обмен значительным количеством энергии между рассеянным фотоном и рассеивающей молекулой. Вследствие этого спектральные компоненты КР сдвинуты относительно частоты падающего излучения на частотные интервалы, равные интервалам между уровнями энергии рассеивающих атомов или молекул. Сечение КР обычно меньше сечения рэлеевского рассеяния примерно на три порядка. Тем не менее, методы лазерного зондирования с использованием КР весьма перспективны, так как дают возможность проводить идентификацию и контроль атмосферных составляющих из одного пункта, а при использовании нерезонансного КР сам эффект не зависит от длины волны падающего излучения. Интенсивность линий КР пропорциональна числу молекул в начальных состояниях, переходы из которых порождают данную линию или полосу; КР используется не только для получения информации о молекулярной структуре, но и для измерений плотности, температуры и концентрации загрязнений в воздухе. Достигнуты значительные успехи в преодолении трудностей, обусловленных чрезвычайно малым эффективным сечением КР. [42,48-51,68,70-73,79-81,94,97,106,108,109,110,134,136].





Когда частота возбуждающего излучения близка к резонансной частоте атома или молекулы, свечение КР существенно увеличивается вследствие резонансного роста значения тензора поляризуемости. Данный процесс называется резонансным КР, и в это понятие включается не только чисто резонансное, но и происходящее вблизи резонанса взаимодействие. Хотя этот эффект был открыт давно, обсуждался в течение многих лет, количественные измерения стали возможны только после создания перестраиваемых по частоте лазеров. Увеличение сечения от трех до шести порядков величины по сравнению с сечением обычного КР на молекулах N2 наблюдалось при переходе к резонансу для таких молекул, как I2, NO2, О3. Это позволяет дистанционно обнаруживать весьма низкие концентраций атмосферных составляющих, если поглощение не приведет к значительному ослаблению зондирующего излучения.

Флуоресценция представляет собой спонтанное испускание фотона атомом или молекулой после перехода их в возбужденное состояние при поглощении падающего излучения с частотой v0, лежащей в пределах отдельной линии или полосы поглощения. На рисунке 17-е схематически показан процесс излучения из возбужденного уровня атома или молекулы при переходах на первоначальный уровень. Этот процесс испускания дает дискретный спектр, обычно его называют резонансной флуоресценцией. Если перераспределению по другим возбужденным уровням в результате безизлучательных переходов (рисунок 17-д), то наблюдается широкополосная флуоресценция, имеющая почти непрерывный спектр. Возбуждение флуоресценции всегда требует перестраиваемого источника когерентного оптического излучения (перестраиваемые лазеры и оптические параметрические устройства) для настройки частоты возбуждения на резонансную частоту исследуемых молекул и ли атомов. Так как спектр флуоресценции является характеристикой данного сорта атомов или молекул, то с его помощью удается отождествить компоненты атмосферы. [68,70-73,79-81,94,97,106,108,109,110,134,136].

Все виды флуоресценции в атмосфере обычно подвержены тушению, вызванному неупругими соударениями с молекулами воздуха, что снижает ее интенсивность на несколько порядков по сравнению с интенсивностью при низком давлении (условия в верхней атмосфере или в лаборатории). Процессы соударений приводят также к спектральному уширению флуоресценции, увеличению деполяризации и уменьшению анизотропии вследствие «потери памяти» о направлении распространения и поляризации возбуждающего излучения.

Флуоресценция является последовательностью двух однофотонных процессов, т.е.

двухступенчатым взаимодействием, состоящим в поглощении отдельного фотона частоты v0 с последующим спонтанным испусканием фотонов частотой vp. Интенсивность флуоресценции при высоких давлениях затухает экспоненциально. Рассеяние света на отдельном атоме или молекуле является двухфотонным процессом, описываемым одноступенчатым взаимодействием, которое приводит одновременно к исчезновению фотона с частотой v0 и появлению другого фотона с частотой vp.

На рисунке 17-е изображен случай, когда возбуждение в области сильного поглощения приводит одновременно к испусканию фотонов с частотой, равной или очень близкой к частоте v0. Такое резонансное рассеяние реализуется для паров атомов, имеющих большое сечение резонансного рассеяния и находящихся на больших высотах.

Трехмерно-угловое распределение интенсивности КР приведено на рисунке 18.

Минимальные и максимальные радиальные размеры тороида характеризуют процесс рассеяния и определяют поперечное сечение рассеяния и деполяризации рассеянного излучения. Поперечное сечение рассеяния определяется максимальным радиальным размером тороида, деполяризация — отношением минимального размера к максимальному.

Рисунок 18 - Диаграмма трехмерного распределения интенсивности Лазерное излучение направлено вдоль оси «y» и поляризовано в направлении оси «х»;

телесные углы, под которыми собирается рассеянный свет, расположены вдоль осей «x» и «z»

Теория комбинационного рассеяния света В процессе рассеяния кванта света с энергией hv0 на молекуле, находящейся в переходном состоянии с энергией Е, молекула претерпевает двойной переход, поглощая и испуская фотон. При поглощении фотона энергия молекулы возрастает до уровня Е + hv0 и, если этот уровень энергии не окажется стационарным, молекула возвращается на какой-то другой уровень ЕI с испусканием кванта света. Если Е IE, то энергия фотона уменьшается до hv0 – (EI – Е), тогда как внутренняя энергия молекулы увеличивается на (EI – Е).

Последний процесс возможен только в случае, когда переходный энергетический уровень Е не соответствует основному энергетическому состоянию. Рассеянное излучение, возникающее при этом, отличается по частоте от возбуждающего, излучения. При Е IЕ излучается стоксова, а при ЕIЕ — антистоксова компонента КР. На рисунке 19 показана диаграмма энергетических уровней и переходов в молекуле при КР. [108,109,134,136,145] Законы КР следующие:

1) спутники сопровождают каждую линию первичного света: различие v в частотах возбуждающей первичной линии v0 и линий каждого из спутников v I, vII, vIII… является характеристикой рассеивающего вещества и равно частотам собственных колебаний vi его молекул;



Pages:     | 1 |   ...   | 18 | 19 || 21 | 22 |   ...   | 64 |
 


Похожие работы:

« ЛЮБЧИК АННА НИКОЛАЕВНА ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ МАГНИТОМЕТРИЧЕСКОГО МЕТОДА ДИСТАНЦИОННОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДЗЕМНЫХ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ Специальность 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий ДИССЕРТАЦИЯ на соискание ученой степени кандидата технических наук Научный руководитель доктор геолого-минералогических наук, профессор Е.И. Крапивский САНКТ-ПЕТЕРБУРГ -2014 2 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ ГЛАВА 1 АНАЛИТИЧЕСКИЙ ОБЗОР ...»

« ПЕНКИН КОНСТАНТИН ВЛАДИМИРОВИЧ МАТЕМАТИЧЕСКИЕ МОДЕЛИ СТАДИИ СИНТЕЗА ПРОИЗВОДСТВА ЭТАНОЛАМИНОВ И РАЗРАБОТКА ОПТИМАЛЬНЫХ СИСТЕМ КОРРЕКЦИИ ЕГО ФРАКЦИЙ НА ОСНОВЕ ХРОМАТОГРАФИЧЕСКОЙ ДИАГНОСТИКИ Специальность 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий Диссертация на соискание ученой степени кандидата технических наук Научный руководитель – доктор технических наук, профессор Сажин С.Г. Дзержинск – 2014 г. 2 Оглавление Введение Глава 1. Анализ ...»

« ПЕНКИН КОНСТАНТИН ВЛАДИМИРОВИЧ Математические модели стадии синтеза этаноламина и разработка оптимальных систем коррекции его фракций Специальность 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий Диссертация на соискание ученой степени кандидата технических наук Научный руководитель – доктор технических наук, профессор Сажин С.Г. Дзержинск – 2014 г. 2 Оглавление Введение Глава 1. Анализ технологического процесса синтеза этаноламинов как ...»

«Величко, Александр Павлович Разработка ИК­радиометрического комплекса, обеспечивающего дистанционный контроль и исследование облаков и прозрачности атмосферы Москва Российская государственная библиотека diss.rsl.ru 2007 Величко, Александр Павлович.    Разработка ИК­радиометрического комплекса, обеспечивающего дистанционный контроль и исследование облаков и прозрачности атмосферы [Электронный ресурс] : дис. . канд. техн. наук : 05.11.13. ­ Москва: РГБ, 2007. ­ (Из фондов Российской ...»

« Пастухов Юрий Викторович ИНФОРМАЦИОННО – ИЗМЕРИТЕЛЬНАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОЦЕССА ПРОМЫШЛЕННОЙ КОРРОЗИИ С ИЗМЕРИТЕЛЬНЫМ ПРЕОБРАЗОВАТЕЛЕМ НА ОСНОВЕ ЯДЕРНО-ФИЗИЧЕСКИХ МЕТОДОВ 05.11.16 - Информационно-измерительные и управляющие системы (в машиностроении) Диссертация на соискание учёной степени кандидата технических наук Научный руководитель – докт. техн. наук, профессор Муха Ю. П. Волгоград - 2014 2 Оглавление Введение.... 5 Глава 1. Современное состояние ...»

« Фесько Юрий Александрович РАЗРАБОТКА И ИССЛЕДОВАНИЕ ОПТИКО-ЭЛЕКТРОННЫХ МЕТОДОВ ОПРЕДЕЛЕНИЯ ТРЕХМЕРНОЙ ФОРМЫ ОБЪЕКТОВ 05.11.07 – Оптические и оптико-электронные приборы и комплексы Диссертация на соискание ученой степени кандидата технических наук Научный руководитель – кандидат технических наук, профессор Тымкул Василий Михайлович Новосибирск – 2014 2 ОГЛАВЛЕНИЕ Введение 1 Аналитический обзор научно-технической и патентной литературы по оптическим и оптико-электронным ...»

« ЛАРИН АЛЕКСЕЙ АНДРЕЕВИЧ СПОСОБЫ ОЦЕНКИ РАБОТОСПОСОБНОСТИ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ МЕТОДОМ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Специальность: 05.11.13 – Приборы и методы контроля природной среды, веществ, материалов и изделий Диссертация на соискание ученой степени кандидата технических наук Научный руководитель -кандидат технических наук, старший научный сотрудник Бакулин В.Н. Научный консультант - кандидат технических наук, доцент Резниченко В.И. Москва 2013 2 Содержание ...»








 
© 2013 www.dis.konflib.ru - «Бесплатная электронная библиотека»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.